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Can we improve GCMs’ accuracy in global precipitation change!

Strong GCM disagreements
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—  Use physical “scaling” that connect precipitation changes to sources of uncertainty

[Pendergrass et al. 2014]



The energy constraint (radiative cooling)
drives an increase of 2-3%/K in mean rain [Allen&Ingram (2002)]
mainly affects the weakest rain rates [Chua et al. (2019)]
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Uncertainty from resolved and unresolved processes

Mesoscale Synoptic Global energy

Cloua Turbulence Convection -l _ _
organization circulation balance

microphysics

- equator

mm-cm — 10-100m —— 10-100km —— 100-1000km

Global Climate Models (CMIP models, CAM)

\ 4

A
Y

Cloud-Resolving Model (SAM)

A
Ll

A

Superparameterized Model (SPCAM)

A

\4

Embedded CRMs Outer GCM



Using simple physical scalings to pinpoint sources of error

1. Inter-model spread in mean rainfall
from radiative transfer parameterizations

2. Possible model biases in extreme rainfall
from the coupling between convection and circulation



Using simple physical scalings to pinpoint sources of error

1. Inter-model spread in mean rainfall
from radiative transfer parameterizations
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Uncertainties in mean rainfall

Change in: Precipitation Longwave cooling  Shortwave heating
L’UAP _ ALWC Avaabs
(W/m?/K) AT AT AT
mean +1.3 2.7 +1.1

CMIP5 multi-model

spread 1.0 1.5 0.9




Uncertainties in mean rainfall

Change in: Precipitation Longwave cooling  Shortwave heating
L’UAP _ ALVVC Avaabs
(W/m%/K) AT AT AT
mean +1.3 -2.7 +1.1
CMIP5 multi-model
spread 1.0 1.5 0.9
/ OR \
Spatial distribution of Radiative transfer
absorptive species? schemes?

Explained by different water-vapor / lapse-rate
feedback strengths [Pendergrass & Hartmann (2013)]
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SWabs = aS

Emulating the behavior of radiative transfer codes

Radiation parameters
|
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Use them to reproduce model disagreements in
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[Fildier et al. 2015]



Emulating the behavior of radiative transfer codes

Radiation parameters
: ‘ v Distribution of water vapor

SWaps =S [ p (1 — 6_<”’W+5)/“) f (g, W)dpdW

Solar kradiance outside the atmosphere

86% of the | |
multi-model 83% <1%
variance

[Fildier et al. 2015]
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HadGEM2-ES —
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Using simple physical scalings to pinpoint sources of error

2. Possible model biases in extreme

rainfall

from the coupling between convection and circulation
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Dynamics of extreme rain events with different representations of convection
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Use scaling for precipitation extremes for model comparison

Vertical integral)

P, =~ «a <c<c9(§;*9))e>

Composited on extreme events

“extreme” S

[O’Gorman & Schneider (2009),
Muller et al. (2011),
~Romps (2011)]
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Climate models don’t always agree with CC

Parameterization (CAM5) vs. super-parameterization (SP-CAM)
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[Fildier et al. 2017]



Climate models don’t always agree with CC

Parameterization (CAM5) vs. super-parameterization (SP-CAM)
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\ convection feels’ the large-scale vertical motion.
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Resemblance between CAMS5 and SPCAM
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Fractional change (%/K)

Multiscale coupling btw. convection and the circulation
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SPCAM includes large-scale
circulations, suggesting that
spatial organization on very
large scales don’t affect
convective extremes



Fractional change (%/K)

Multiscale coupling btw. convection and the circulation
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Mesoscale circulations could
enhance rainfall extremes
beyond CC through increases
in precipitation efficiency

SPCAM includes large-scale
circulations, suggesting that
spatial organization on very
large scales don’t affect
convective extremes



Effect of convective organization on extreme rain

Extreme rain intensity
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Effect of convective organization on extreme rain

Extreme rain intensity
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Summing up some structural uncertainties in GCMs

Total error Model disagreements General model bias
- 3\ 2 Vs 2
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Different parameterizations, Processes ignored in climate models
spatial resolutions, etc. (e.g. across-scale interactions ?)

e.g. radiative transfer schemes  e.g. coupling convection-circulation
(mean rainfall) (extreme rainfall)

1 ' -. .‘ . v _2&?;
How to compute uncertainties when modeling strategies differ? = '
Different metrics, methods, boundary conditions, forcing and physics

considered
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Uncertainty from resolved and unresolved processes
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Link between processes and

lobal hydrologic uncertainty?
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